Парність і непарність тригонометричних функцій. Періодичність тригонометричних функцій. Формули зведення: відмінності між версіями

Матеріал з Вікіпідручника
Вилучено вміст Додано вміст
Shybetsky (обговорення | внесок)
Немає опису редагування
Shybetsky (обговорення | внесок)
Немає опису редагування
Рядок 18: Рядок 18:
Зрозуміло, що при такому означенні будь яке число <math> \tau =nT</math>, теж є періодом функції <math>f(x)</math>. Дійсно,<br>
Зрозуміло, що при такому означенні будь яке число <math> \tau =nT</math>, теж є періодом функції <math>f(x)</math>. Дійсно,<br>
<math> f(x+ \tau) = f(x+nT) = f(x+(n-1)T+T) = f(x+(n-1)T) = ... = f(x+T) = f(x)</math>.
<math> f(x+ \tau) = f(x+nT) = f(x+(n-1)T+T) = f(x+(n-1)T) = ... = f(x+T) = f(x)</math>.
[[File:Тригонометричне коло.png|thumb|Тригонометричне коло]]

Версія за 14:15, 30 грудня 2018

Парність і непарність тригонометричних функцій

Надамо означення парної та непарної функцій. Нехай задана на симетричній множині , тобто, якщо , то й .
Парною називається функція , якщо для будь-якого з області визначення функції виконується співвідношення:

.  (17)

Непарною називається функція , якщо для будь-якого з області визначення функції виконується співвідношення:

.  (18)

Функція, для якої не виконуються співвідношення (17) та (18), називається ні парною, ні непарною.

Дослідження на парність

Дослідимо на парність та непарність тригонометричні функції. Кути і утворюються при повороті променя в двох взаємно протилежних напрямках(за годинниковою стрілкою та проти годинникової стрілки). Тому кінцеві сторони та цих кутів симетричні відносно осі абсцис. Координати одиничних векторів та задовольняють співвідношення , . Тому , . Отже, синус є непарною функцією, а косинус – парною. Далі маємо: , . Тому тангенс і котангенс є непарними функціями.
Приклад 1. Обчислити значення тангенса кута .
Розв’язання.Враховуючи, що і , отримаємо, що .

Вправи

18. Обчислити значення синуса кута . 19. Обчислити значення косинуса кута .

Періодичність тригонометричних функцій

Введемо означення періодичної функції.
Нехай задано функцію , . Функція називається періодичною, якщо разом з довільним одночасно і , а також , де . Число називається періодом функції .
Зрозуміло, що при такому означенні будь яке число , теж є періодом функції . Дійсно,

.
Тригонометричне коло